NCHU Course Outline |
Course Name | (中) 人工智能在智慧城市的應用(7504) | ||||
(Eng.) AI for Smart Cities | |||||
Offering Dept | Engineering | ||||
Course Type | Elective | Credits | 1 | Teacher | Undefined |
Department | Engineering | Language | English | Semester | 2025-FALL |
Course Description | This course consists of four parts: 1) present AI history, concept, and models, 2) present a unique system approach of problem-solving using AI for smart cities, 3) present and discuss existing AI applications, including their use, benefits, performance matrix and annotation data for training and validation, and 4) present complete solutions of AI application. This course combines conventional teaching and case studies. | ||||
Prerequisites | self-directed learning in the course | Y |
Relevance of Course Objectives and Core Learning Outcomes(%) | Teaching and Assessment Methods for Course Objectives | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives | Competency Indicators | Ratio(%) | Teaching Methods | Assessment Methods | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Students are able to 1. describe AI history, concepts, and models. 2. review and summarize the key points of the AI applications and articles using a system approach. 3. summarize and discuss existing AI applications, including their use, benefits, performance matrix, annotation data for training and validation, and complete solutions. |
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Content and Homework/Schedule/Tests Schedule | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assessment: 1. Group Assignment (Case Study) 2. Two Quizzes 3. Mid-Test |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Textbook & other References | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning material will include the following: 1) Open web sites, including but not limited to the following https://www.sas.com/en_us/insights/analytics/machine-learning.html https://quantdare.com/machine-learning-a-brief-breakdown/ https://www.edureka.co/blog/ai-vs-machine-learning-vs-deep-learning/ 2) Published papers & reports a)Tsai, Y., Zhao, Y., Pop-Stefanov, B., Chatterjee, A. C. (2020) “Automatically Detect and Classify Asphalt Pavement Raveling Severity Using 3D Technology and Machine Learning”, International Journal of Pavement Research and Technology, pp. 1-9. b)Hsieh, Y., Tsai, Y. (2020) “Machine Learning for Crack Detection: review and model performance comparison”, ASCE Journal of Computing in Civil Engineering, 34 (5), 04020038. c)Hsieh, Y. A., Yang, Z., and Tsai, Y. C. (2021). Convolutional neural network for automated classification of jointed plain concrete pavement conditions. Computer‐Aided Civil and Infrastructure Engineering, 36(11), 1382-1397. d)Bukharin, A. W., Yang, Z., Tsai, Y. (2021). "Five-Year Project-Level Statewide Pavement Performance Forecasting Using a Two-Stage Machine Learning Approach Based on Long Short-Term Memory." Transportation Research Record 2675.11 (2021): 280-290. e)Georgia Department of Transportation Pavement Condition Evaluation System Manual, 2017. f)Florida Department of Transportation Flexible Pavement Condition Survey Handbook, 2017. g) Tsai, Y., Wu, Y., Six, N., Pranav, C. (2019) “Curve Safety Improvements Using Mobile Device and Automatic Curve Sign Detection – Phase I”, RP 18-18, Final Report, Georgia Department of Transportation. h)Tsai, Y., Yu, P., Liu, T., Knezevich R., Wang, C. (2021) “Curve Safety Improvements Using Mobile Device and Automatic Curve Sign Detection – Phase II”, RP 19-26, Final Report, Georgia Department of Transportation. 3) Power point presentations, introducing basic concepts, models, and different real-world AI applications |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Teaching Aids & Teacher's Website | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
https://ce.gatech.edu/people/faculty/1001/overview (CV has provided since the web site publication has not yet been updated by GT IT) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Office Hours | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
https://ce.gatech.edu/people/faculty/1001/overview (CV has provided since the web site publication has not yet been updated by GT IT) 請遵守智慧財產權,不得非法影 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sustainable Development Goals, SDGs(Link URL) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Please respect the intellectual property rights and use the materials legally.Please respect gender equality. | |
Update Date, year/month/day:None | Printed Date, year/month/day:2025 / 6 / 18 |
The second-hand book website:http://www.myub.com.tw/ |