國立中興大學教學大綱
課程名稱 (中) 物理數學(一)(2283)
(Eng.) Mathematical Physics(I)
開課單位 物理系
課程類別 必修 學分 3 授課教師 黃文敏
選課單位 物理系學士班 授課語言 英文 開課學期 1141
課程簡述 This course is designed to equip students with the mathematical tools essential for understanding and solving problems in physics. Emphasis in the first semester will be placed on methods for solving differential equations encountered in physics, including first-order and second-order differential equations, as well as the study of special functions relevant to physical applications.
先修課程名稱
課程含自主學習 Y
課程與核心能力關聯配比(%) 課程目標之教學方法與評量方法
課程目標 核心能力 配比(%) 教學方法 評量方法
This course develops the mathematical skills needed to understand and solve physics problems, with emphasis on methods applicable to advanced physics courses. The first semester focuses on solving differential equations in physics.
1.專業知能
2.問題分析與邏輯推理
50
50
習作
討論
講授
出席狀況
口頭報告
作業
測驗
授課內容(單元名稱與內容、習作/每週授課、考試進度-共16週加自主學習)
週次 授課內容
第1週 *The actual teaching schedule will be adjusted according to students’ progress.*
Introduction to Differential Equations
第2週 Solution of First-Order Ordinary Differential Equations (I)
第3週 Solution of First-Order Ordinary Differential Equations (II)
第4週 Solution of Second-Order Linear Ordinary Differential Equations with Constant Coefficients (I)
第5週 Solution of Second-Order Linear Ordinary Differential Equations with Constant Coefficients (II)
第6週 Solution of Second-Order Linear Ordinary Differential Equations with Constant Coefficients (III)
第7週 Fourier series and transformation
第8週 midterm
第9週 Sturm-Liouville boundary condition problem and generalized Fourier series (I)
第10週 Sturm-Liouville boundary condition problem and generalized Fourier series (II)
第11週 Power Series Solutions of Ordinary Differential Equations (I)
第12週 Power Series Solutions of Ordinary Differential Equations (II)
第13週 special functions - Harmite function
第14週 special functions - Legendre function
第15週 special functions - Bessel function
第16週 Final exam
自主學習
內容
   02.閱覽產業及學術相關多媒體資料
Studying further special functions, for instance, spherical harmonics fucntion and Laguerre polynomials, etc.
學習評量方式
midterm exam 50%. and final exam 50%
教科書&參考書目(書名、作者、書局、代理商、說明)
Mathematical Methods in the Physical Sciences (3rd edition), Mary L. Boas, Wiley and Advanced engineering mathematics (10th edition), by Erwin Kreyszig
課程教材(教師個人網址請列在本校內之網址)
Main textbooks and Instructor’s lecture notes
課程輔導時間
Students who require additional support may contact the instructor by email to arrange an appointment.
聯合國全球永續發展目標(連結網址)
提供體驗課程:N
請尊重智慧財產權及性別平等意識,不得非法影印他人著作。
更新日期 西元年/月/日:2025/09/02 03:31:26 列印日期 西元年/月/日:2025 / 11 / 05
MyTB教科書訂購平台:http://www.mytb.com.tw/