| 週次 |
授課內容 |
| 第1週 |
- Introduction: Goals and history of IR. The impact of the web on IR. |
| 第2週 |
- Basic IR Models: Boolean and vector-space retrieval models; ranked retrieval; text-similarity metrics; TF-IDF (term frequency/inverse document frequency) weighting; cosine similarity. |
| 第3週 |
- Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval: Simple tokenizing, stop-word removal, and stemming; inverted indices; efficient processing with sparse vectors; Java implementation. |
| 第4週 |
- Experimental Evaluation of IR: Performance metrics: recall, precision, and F-measure; Evaluations on benchmark text collections. |
| 第5週 |
- Page Rank
- Web Search: Link Analysis, HITS algorithm |
| 第6週 |
- Midterm Exam |
| 第7週 |
- Word2vec, Word Embedding |
| 第8週 |
- RNN, Transformer, Attention Mechanism |
| 第9週 |
- BERT and Pretrained Language Model
|
| 第10週 |
- Reading Comprehension Model
- Language Generation Model
|
| 第11週 |
- Project Proposal |
| 第12週 |
- Paper Presentation |
| 第13週 |
- Paper Presentation |
| 第14週 |
- Paper Presentation |
| 第15週 |
自主學習:EM (Expectation-Maximization) algorithm |
| 第16週 |
自主學習:Rocchio algorithm for Relevance Feedback
- Project Demo
- Final Exam |
自主學習 內容 |
   01.參與專業論壇、講座、企業分享等產官學研相關交流活動    03.製作專題報告
|