| 週次 |
授課內容 |
| 第1週 |
Introduction to Data Analysis and Machine Learning
Course overview, supervised vs unsupervised |
| 第2週 |
Linear Regression
Prediction, evaluation, overfitting |
| 第3週 |
Linear and Kernel-Based Classification
Logistic regression, kNN, support vector machines |
| 第4週 |
Model Evaluation and Regularisation
Bias–variance, cross-validation, ridge and lasso |
| 第5週 |
Decision Trees and Ensembles
Splitting, random forests, feature importance |
| 第6週 |
Clustering
Unsupervised grouping, distance measures, evaluating cluster quality |
| 第7週 |
Dimensionality Reduction
PCA, variance, visualisation |
| 第8週 |
Neural Networks
Perceptrons, activation, backpropagation |
| 第9週 |
Natural Language Processing
Tokenisation, bag-of-words, text classification |
| 第10週 |
Exam
Covers Weeks 1–9: concepts, algorithms, and ML implementation |
| 第11週 |
Project Development I
Begin implementation; supervised coding sessions |
| 第12週 |
Project Development II
Continue development; checkpoints and mentoring |
| 第13週 |
Project Development III
Refinement and testing; peer evaluation |
| 第14週 |
Project Development IV
Short updates, debugging support, feedback sessions |
| 第15週 |
Final Presentation I
Formal presentations and oral defence |
| 第16週 |
Final Presentation II
Remaining presentations, peer review, reflection |
自主學習 內容 |
   03.製作專題報告
|