國立中興大學教學大綱
課程名稱 (中) 偏微分方程之數值方法(3220)
(Eng.) Numerical Methods for Partial Differential Equations
開課單位 應數系
課程類別 必修 學分 3 授課教師 鄧君豪
選課單位 應數系 / 學士班 授課使用語言 英文 英文/EMI Y 開課學期 1141
課程簡述 Many scientific problems are described by partial differential equations. However, the analytical solution of partial differential equations has its limitations, often only applicable to linear problems with constant coefficients, and cannot be applied to real scientific and engineering problems. Numerical methods for partial differential equations are an applied mathematical tools that utilize the theoretical results and numerical methods to construct discrete systems of equations that mimic the properties of the original equations. Through computer computations, approximate solutions to partial differential equations are obtained to compensate for the shortcomings of analytical methods.

許多的科學問題是以偏微分方程的形式來描述。但偏微分方程的解析解法卻有其侷限性,往往只能用於常係數線性問題,對於真實的科學和工程問題解析方法往往無法應用。偏微分方程數值方法是一門應用數學方法,其精神是運用偏微分方程的理論結果和數值方法,建構一離散但仿原方程式的性質的系統方程式,透過計算機執行,求偏微分方程的近似解,以彌補解析方法的不足。
先修課程名稱
課程含自主學習 Y
課程與核心能力關聯配比(%) 課程目標之教學方法與評量方法
課程目標 核心能力 配比(%) 教學方法 評量方法
1. Understand the basic concepts of numerical partial differential equations and how to use numerical methods to design calculation formats and obtain approximate solutions to partial differential equations.

2. Have a foundation in studying advanced numerical partial differential equations.

3. Have the basic research ability to conduct relevant topics.

1.了解數值偏微分方程的基本概念和如何使用數值方法設計計算格式,求得偏微分方程的近似解。
2.具備修習高等數值偏微分方程的基礎。
3.具備進行相關專題的基本研究能力。
2.數學分析專業知識
4.計算科學專業知識
5.資訊科學專業知識
30
35
35
專題探討/製作
網路/遠距教學
參訪
習作
討論
實習
講授
書面報告
口頭報告
測驗
作業
出席狀況
授課內容(單元名稱與內容、習作/每週授課、考試進度-共16週加自主學習)
週次 授課內容
第1週 Course Introduction
Basic concepts of numerical partial differential equations
第2週 Advection equaltions: Wellposed-ness
第3週 Summation-by-parts methods for numerical partial differential equations
第4週 Numerical schemes for advection equations: stability analysis
第5週 Wave equations on a spherical surface
Grid construction: Cubed-sphere
第6週 Numerical scheme for advcection equations on spherical surfaces (1)
第7週 Numerical scheme for advcection equations on spherical surfaces (2)
第8週 Numerical scheme for advcection equations on spherical surfaces (2)
第9週 Mid-term: Presentation
第10週 Shallow water equations on a sphere
Skew-symmetric form
第11週 Numerical scheme for shallow water equations on spherical surfaces (1)
Scheme construction
第12週 Numerical scheme for shallow water equations on spherical surfaces (2)
Validation
第13週 Numerical scheme for shallow water equations on spherical surfaces (3)
Simulation of flow over an isolated mountain
第14週 Numerical scheme for shallow water equations on spherical surfaces (4)
Simulation of other wave problems
第15週 Final: presentation
第16週 Self-study: studying journal papers
自主學習
內容
   02.閱覽產業及學術相關多媒體資料

學習評量方式
Attendence: 10%

Homework: 20%

Mid-term (30%): Presentation(10%) and written report(20%)

Final(40%): Presnetation (20%) and written report (20%)
教科書&參考書目(書名、作者、書局、代理商、說明)
NA
課程教材(教師個人網址請列在本校內之網址)
Lecture notes will be provided in the I-learning system
課程輔導時間
Mon. 15:00-16:00
聯合國全球永續發展目標(連結網址)
提供體驗課程:N
請尊重智慧財產權及性別平等意識,不得非法影印他人著作。
更新日期 西元年/月/日:2025/06/12 15:58:16 列印日期 西元年/月/日:2025 / 7 / 02
MyTB教科書訂購平台:http://www.mytb.com.tw/