週次 |
授課內容 |
第1週 |
Using R language |
第2週 |
Using R language |
第3週 |
Multivariate normal distribution |
第4週 |
Least square (LS) regression |
第5週 |
Maximum likelihood (ML) regression |
第6週 |
GCV, AIC: Best subset regression |
第7週 |
Stepwise regression |
第8週 |
L2-norm regularized (ridge) regression (RR) |
第9週 |
Adaptive weighted ridge regression (AWRR) |
第10週 |
Polynomial regression; Basis function and data transformation |
第11週 |
Ridge regression with the (spline) basis expansion |
第12週 |
Additive model (I) with the RR |
第13週 |
Additive model (II) with the AWRR |
第14週 |
Smoothing spline (I) |
第15週 |
Smoothing spline (II) |
第16週 |
Final reports
Self-learning (Additive model estimated by the backfitting algorithm)
Assignment: homework problems + learning experience report
Self-learning (Additive model estimated by the stagewise regression (boosting))
Assignment: homework problems + learning experience report |
自主學習 內容 |
|