國立中興大學教學大綱
課程名稱 (中) 人工智慧概論(1309)
(Eng.) Introduction to Artificial Intelligence
開課單位 智慧創意學程
課程類別 必修 學分 3 授課教師 李宏中
選課單位 智慧創意學程 / 學士班 授課使用語言 英文 英文/EMI Y 開課學期 1141
課程簡述 The basic concepts of AI/machine learning algorithms would be introduced. Also, the students would understand how to implement those methods to solve the problems occurred in our daily life.

Self-directed Learning I: NVIDIA CEO Jensen Huang Keynote at COMPUTEX 2024 (https://reurl.cc/QRQnpO)
Self-directed Learning II: Andrew Ng: A Look At AI Agentic Workflows And Their Potential For Driving AI Progress (https://reurl.cc/Gj0ZxA)
先修課程名稱
課程含自主學習 Y
課程與核心能力關聯配比(%) 課程目標之教學方法與評量方法
課程目標 核心能力 配比(%) 教學方法 評量方法
This course intends to introduce the concepts of Artificial Intelligence (AI) and its implementations. Also, each student should learn how to code and apply the algorithms so as to analyze the real-world problems.
專題探討/製作
講授
習作
討論
出席狀況
作業
實作
口頭報告
授課內容(單元名稱與內容、習作/每週授課、考試進度-共16週加自主學習)
週次 授課內容
第1週 Introduction to Artificial Intelligence (AI)
第2週 Applications of AI and Its Problem Solving
第3週 The Introduction of AI Procedure - I
第4週 The Introduction of AI Procedure - II
第5週 The Types of Machine Learning
第6週 Machine Learning - Classification
第7週 Machine Learning - Regression
第8週 Project Proposal
第9週 Machine Learning - Summary
第10週 Introduction to Neural Network (NN) - I
第11週 Introduction to Neural Network (NN) - II
第12週 Implementation - I
第13週 Implementation - II
第14週 Implementation - III
第15週 Data Visualization
第16週 Final Presentation Self-directed Learning I - Participate in relevant lectures, workshops, or seminars using materials designated by the instructors. Self-directed Learning II - Participate in relevant lectures, workshops, or seminars using materials designated by the instructors.
自主學習
內容

學習評量方式
Homework/Participation (40%), Project Proposal (20%), Final Presentation (30%), Self-directed Learning Report (10%)
教科書&參考書目(書名、作者、書局、代理商、說明)
Main Textbook: Handout
● Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018) Foundations of Machine Learning (2/e), MIT Press, ISBN: 9780262039406.
● Albon, Chris (2018) Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning, O’Reilly, ISBN: 9781491989388.

課程教材(教師個人網址請列在本校內之網址)
The course materials would be found at ilearn.
課程輔導時間
Wednesday 10:00-11:00 am or please contact the teacher to arrange a meeting time.
聯合國全球永續發展目標(連結網址)
04.教育品質提供體驗課程:N
請尊重智慧財產權及性別平等意識,不得非法影印他人著作。
更新日期 西元年/月/日:無 列印日期 西元年/月/日:2025 / 7 / 17
MyTB教科書訂購平台:http://www.mytb.com.tw/