| 週次 |
授課內容 |
| 第1週 |
Course Overview |
| 第2週 |
Python Basic Tutorial |
| 第3週 |
Data Preprocessing, Mining Association Rules |
| 第4週 |
Classification:Confusion Matrix, Decision Tree, Bayesian Classification |
| 第5週 |
Classification:Support Vector Machine, KNN, Ensemble Learning |
| 第6週 |
Cluster Analysis:K-Means, Hierarchical Clustering |
| 第7週 |
Neural Network I |
| 第8週 |
Final Project Proposal & Discussion |
| 第9週 |
Neural Network II |
| 第10週 |
Computer Vision: Image Classification, Convolutional Neural Networks I |
| 第11週 |
Computer Vision: Image Classification, Convolutional Neural Networks II |
| 第12週 |
Midterm Exam |
| 第13週 |
Text Mining:Information Retrieval, Vector Space Model, Recurrent Neural Networks |
| 第14週 |
Large Language Models and Prompt Engineering |
| 第15週 |
Final Project Presentation |
| 第16週 |
Final Project Presentation |
自主學習 內容 |
期末專題報告書面與程式檔案繳交 |