國立中興大學教學大綱
課程名稱 (中) 社會資料分析與應用入門(6905)
(Eng.) Introduction to Social Data Analytics and Applications
開課單位 國務所
課程類別 選修 學分 1 授課教師 潘競恒
選課單位 國務所 / 碩士班 授課使用語言 中文 英文/EMI 開課學期 1121
課程簡述 This introductory course is composed of six topic modules introducing students to data science and applications, with an emphasis on social data. Each module is delivered in three hours, giving overview and survey in sub-fields of data science with illustrations and hands-on practices. Students should follow pre-class instructions to prepare materials and own device before coming to class. This short course is co-designed by NCHU and University of Texas at Dallas. A certificate of course completion jointly issued by both Universities will be awarded to students who successfully meet all course requirements.
先修課程名稱
課程含自主學習 N
課程與核心能力關聯配比(%) 課程目標之教學方法與評量方法
課程目標 核心能力 配比(%) 教學方法 評量方法
To guide students with minimal or no data engineering background into the basic knowledge realm of data science. 針對不具資料編程與數據分析學科背景的學生,習得基礎知識與操作
習作
講授
網路/遠距教學
作業
實作
授課內容(單元名稱與內容、習作/每週授課、考試進度-共18週)
週次 授課內容
第1週
第2週
第3週
第4週 9月26日
課前準備:
-Bring own device (Windows 10 or MacOS, no tablets)
-All software/applications used in this class are open-sourced
-Programming in cloud platforms (RStudio cloud, Google Colab)
-Recommended accounts: GitHub
資料科學綜覽
a.What is Big Data?
b.Theory of Data Generation
c.How to equip for data scientist
d.Tools for professional data scientists
第5週 10月3日
課前準備:
-Install R, RStudio, Python and Jupyter Notebook
-GitHub account
程式編寫的基礎
an introduction to the most commonly used programming languages in Data Science: Python, R and SQL
a.How to start programming?
b.Best programming practices
c.IDE (Integrated Development Environment)
d.Python programming basics
.Hands-on: use Python to download social media data
e.R programming basics
. Hands-on: Build visualization dashboard
f.SQL and database
. Hands-on: database management system on database server
第6週 10月17日
資料蒐集方法
Introducing different data collection methods from small data (e.g. surveys, interview) to big data (e.g. social media, web data)
a.Made data and Found data
b.Data generation and data structure
c.Designing data collection scheme
d.API and non-API methods
第7週 10月24日
資料視覺化
This course module covers basic theory of data visualization and emphasizes hands-on training in building charts and development data visualization applications.
a.Cognitive science of data visualization
b.Visual thinking
c.Exploratory Data Analysis
. Form follows functions, chart follows data types
d.Reactive and Interactive charts and applications
第8週 10月31日
資料庫簡介
Introducing database concepts and systems, with hands-on database management practices and maintenance
a.Relational database
b.Entity-Relation Model (ERM)
c.Build database server
d.Database management and applications
第9週 11月7日
機器學習簡介
This course module introduces concepts of machine learning and surveys different methods and applications.
a.Machine learning and Statistics
. Data model vs. Algorithmic model
. Explanation, Prediction, and Inference
b.Supervised learning
c.Unsupervised learning
d.Model selection
e.Interpretable Machine Learning
f.Machine learning applications
第10週
第11週
第12週
第13週
第14週
第15週
第16週
第17週
第18週
學習評量方式
There will be 6 homework assignments corresponding to each course module.
教科書&參考書目(書名、作者、書局、代理商、說明)

課程教材(教師個人網址請列在本校內之網址)

課程輔導時間

聯合國全球永續發展目標(連結網址)
01.消除貧窮   02.消除飢餓   03.健康與福祉   04.教育品質   05.性別平等   06.淨水與衛生   07.可負擔能源   10.減少不平等   11.永續城市   12.責任消費與生產   13.氣候行動   14.海洋生態   15.陸地生態   16.和平與正義制度提供體驗課程:Y
請尊重智慧財產權及性別平等意識,不得非法影印他人著作。
更新日期 西元年/月/日:2023/08/30 12:46:17 列印日期 西元年/月/日:2025 / 5 / 01
MyTB教科書訂購平台:http://www.mytb.com.tw/