Relevance of Course Objectives and Core Learning Outcomes(%) |
Teaching and Assessment Methods for Course Objectives |
Course Objectives |
Competency Indicators |
Ratio(%) |
Teaching Methods |
Assessment Methods |
了解級數、函數列、 R^n上的拓樸、收歛、微分性質及賦距空間 |
1.Basic Knowledge in Mathematical Sciences |
2.Professional Knowledge in Mathematical Analysis |
8.English Language Ability |
|
|
|
|
Course Content and Homework/Schedule/Tests Schedule |
Week |
Course Content |
Week 1 |
Series
|
Week 2 |
Series |
Week 3 |
Series/Series of functions
Quiz 1 |
Week 4 |
Series of functions
|
Week 5 |
Series of functions |
Week 6 |
Series of functions/Euclidean spaces
Quiz 2 |
Week 7 |
校慶及運動會補假 |
Week 8 |
Midterm exam/ Euclidean spaces
|
Week 9 |
Euclidean spaces/Convergence in R^n
|
Week 10 |
Convergence in R^n
Quiz 3 |
Week 11 |
Convergence in R^n
|
Week 12 |
Convergence in R^n/Metric space
|
Week 13 |
Metric space
Quiz 4 |
Week 14 |
Metric space
|
Week 15 |
Differentiability on R^n
|
Week 16 |
Differentiability on R^n
Quiz 5 |
Week 17 |
Final exam |
Week 18 |
自主學習 |
|
Evaluation |
Quiz 25
Midterm 35
Final exam 40 |
Textbook & other References |
教科書:Introduction to Analysis, W. R. Wade, Pearson, 歐亞書局
參考書目:
1. W. Rudin, Principles of Mathematical Analysis.
2. T.M. Apostol, Mathematical Analysis.
3. J. E. Marsden and M. J. Hoffman, Elementary Classical Analysis. |
Teaching Aids & Teacher's Website |
|
Office Hours |
34, 456 |
Sustainable Development Goals, SDGs(Link URL) |
| include experience courses:N |
|